Mechanical behavior of "living quicksand": Simulation and Experiment
نویسندگان
چکیده
The nature and danger of quicksand has been disputed since a long time. Despite widespread belief that humans can be swallowed or even sucked in, engineers of soil mechanics have typically asserted that, since the density of sludge is larger than that of water, a person cannot fully submerge. We investigated a specific type of quicksand at the shore of drying lagoons. Cyanobacteria form an impermeable crust, giving the impression of stable ground. After breaking the crust a person rapidly sinks to the bottom of the field. We measured the shear strength of the material before and after perturbation and found a drastic change. The initial structure cannot be restored once it had collapsed, i.e. the material investigated shows a strong memory effect. We simulated a model for this type of quicksand in which we constructed a tenuous granular structure representing the unperturbed soil. The initial structure consists of cohesive disks put together by ballistic deposition and settled by gravity using Contact Dynamics. We study the material behavior by determining the shear strength of the model material and by penetration tests, i.e. pushing in an object, which leads to breaking of cohesive bonds. We investigate how deep the object can be pushed in and how well the intruder is captured by the material after it collapsed above the intruder. During the penetration process we measured the relation between the driving force and the resulting velocity of the intruder.
منابع مشابه
A micromechanical model of collapsing quicksand
The discrete element method constitutes a general class of modeling techniques to simulate the microscopic behavior (i.e., at the particle scale) of granular/soil materials. We present a contact dynamics method, accounting for the cohesive nature of fine powders and soils. A modification of the model adjusted to capture the essential physical processes underlying the dynamics of generation and ...
متن کاملLarge Deformation Characterization of Mouse Oocyte Cell Under Needle Injection Experiment
In order to better understand the mechanical properties of biological cells, characterization and investigation of their material behavior is necessary. In this paper hyperelastic Neo-Hookean material is used to characterize the mechanical properties of mouse oocyte cell. It has been assumed that the cell behaves as continuous, isotropic, nonlinear and homogenous material for modeling. Then, by...
متن کاملLiving Quicksand
The image of quicksand merciless swallowing a victim has inspired the fantasy of kids and helped writers and moviemakers to get rid of evil figures. Is this really possible? This is still disputed since till today it is not even clear what quicksand exactly is. In soil mechanics, the “quick-condition” is usually described as a liquefaction due to high water pressure essentially possible with an...
متن کاملInvestigation on the Deformation Behavior and Strain Distribution of Commercially Pure Aluminum after Circular Simple Shear Extrusion
Circular simple shear extrusion process was introduced as a new geometry for simple shear extrusion technique to fabricate ultrafine-grained materials. Similar to the simple shear extrusion method, this process is also based on direct extrusion, and the samples deform in a simple shear manner. In this investigation, the simulations were carried out using the commercial finite element code ABAQU...
متن کاملStudying the Mechanical Behavior of Tissue in the Generation of Pressure Sores using Simulation and a Guinea Pig Experimental Model
Introduction: Pressure sores refer to lesions that are produced while a constant pressure causes necrotic tissue to grow. The need for a better comprehension of the process has led researchers to artificial generation of pressure sores. Modeling the mechanical behavior of tissue will provide a better understanding of this process as well as a more suitable selection ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008